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1. Project Goals

The goal of the proposed work was to determine if the temporal asymmetry of signals
could be exploited by signal processing algorithms. We specifically intended to specify
the kinds of dependence structures having physical basis (rather than those chosen for the
modeler’s convenience) and to develop detection or estimation algorithms sensitive to these
structures that yielded signal processing gains. Over the grant’s three-year duration, lasting
from 1 September 1989 until 30 September 1992, a total of $148,248 in ONR funds and
$7,700 in Rice University matching funds were expended. Becuase of this support, these
research goals were accomplished, students receiving ONR support graduated and have
engineering positiuns, and a significant volume of technical literature appeared in reviewed
journals and conference proceedings.

2. Research Results

Fundamentals of temporal symmetry were outlined in a masters thesis [8]. There and in
previous conference papers [1, 10], the fundamentals of temporal symmetry analysis tech-
niques for time series were developed. We uncovered for the signal ~~~cessing community
an important result published by another researcher over ten years eariier: The only linear,
temporally symmetric random process was the Gaussian. This result means that all linear,
non-Gaussian processes were temporally asymmetric, a property theretofore unexplored by
the signal processing community. Linear Markov processes comprised the focal point of our
work, and they are generated by passing white noise W, through a first-order digital filter.

Xp =aXp + W,

To illustrate temporal asymmetry, we focused on the hyperbolic secant process, a partic-
ular linear non-Gaussian process unmentioned in the literature. Superficially, this example
greatly resembles a Gaussian one, but has very different properties. Another example,
due to Rosenblatt, proved quite insightful. Here, the linear, first-order, process has a uni-
form amplitude distribution. Through these examples, the following properties were proven
valid {11}):

¢ The forward conditional expected value E[X, | Xa-1] will be linear for all first-order
linear Markov processes. The backward conditional expected value E{X,._, | X.],
however, will be linear only in the Gaussian case. Thus, process linearity can be
tested by examination of the forward conditional mean. Furthermore, a sensitive test
for Gaussianity is to compare these conditional expected values for linearity.

¢ The backward mean-square prediction error of a non-Gaussian linear Markov process
is always less than the forward prediction error. The Rosenblatt example is particu-
larly striking in this regard: The backward mean-square prediction error is zero while
the forward prediction error is nonzero. We have further shown that the time-reversed
system, which takes X, and produces X,_,, is deterministic, nonlinear, and chaotic.
Thus, one set of ordered numbers can both be produced by a stochastic-driven system
and a deterministic, iterated one. From another perspective, a signal viewed looking
forward in time is random, while viewed looking backward in time is chaotic. We are
now pursuing the research question of what truly distinguishes stochastic from chaotic
signals.
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o We found that unless the process has a class L distribution, it must be generated by
a so-called random coefficient system. The hyperbolic secant density is a member of
this class, and therefore has some physical basis. We demonstrated a specific test for
class L membership.

o We demonstrated a specific algorithm for generating a linear process having a specified
correlation coefficient and amplitude distribution. As one theoretical application of
this algorithm, we settled, in the affirmative, the technical question as to whether a
linear process could have a multimodal amplitude distribution.

Because of the importance of temporal symmetry, accurate measurement of the condi-
tional mean becomes an essential aspect of non-Gaussian signal processing. We developed
a novel nonparametric technique of efficiently estimating the conditional mean [5, 6, 7].
Here, we used the theory of nonparametric regression, and showed that it could be applied
to both stochastic and chaotic systems analysis. We developed a technique of identifying
the input-output relation of the system that generates a set of observations by operating
on a white noise input. Because the technique is nonparametric, it makes few assumptions
about the generation system; the algorithm does need to have the system’s order. These
results have been submitted for publication.

In another line of work, we investigated a technique for determining the order of a
Markov linear process that did not depend on the ubiquitous Gaussian assumption. Our
algorithm is based on the conditional entropy of the process and has been published [4].
This algorithm applies to nonlinear as well as linear Markov processes. Its sole drawback
is computational complexity.

Toward the end of the granting period, a new, potentially important result emerged
that is based on the notion of temporal symmetry [2, 3]. We showed that all physically
obtained time series must result {from time-irreversible random processes. Consequently,
models that produce time-reversible processes, in particular the Gaussian, have no physical
basis. Stationary Gaussian processes cannot serve as models of physical measurements.
This important result is being prepared for formal publication.

We developed a specific aigorithm for designing optimal detectors for linear, non-
Gaussian, continuous-time processes [9]. Here, specification of the random process is only
obtained with difficulty. Calculation of the detector requires detailed analysis of the Pois-
son random measures that underly the observations. These results have been submitted for
publication.

3. Students Supported

Over the project’s three-year period, three graduate students were supported by ONR
funds. An undergraduate worked on aspects of the project, but was not supported by
research funds.

Anand R. Kumar received support for his work on model-order estimation. Graduated
with a Ph.D. in 1990 and is now working for Motorola in India.

P. Srinivasa Rao received support for his work in temporal symmetry and in robust
detection. He was awarded his doctoral degree in 1992 and is now working at the
IBM Watson Research Center in New York.
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Y. Kang Lee received support for his work in nonparametric system identification. He
received his masters degree in 1992 and is now pursuing his doctoral degree, studying
the fundamental properties of chaotic and non-Gaussian-stochastic signals.

David D. Becker developed a numerical algorithm for calculating the amplitude distri-
bution of W, that could produce a first-order Markov linear process having a specified
amplitude distribution. This work served as the topic of his Senior Honors Project,
and was his first research experience. He wen. on to receive a masters degree from
Stanford in 1991 and now works for General Electric Medical Systems.

4. Infrastructure

To complement ONR's award, Rice University provided funds to purchase a SUN (Sparc 1)
workstation for use on the project. This computer was used throughout the granting period
and is still used today in non-Gaussian signal processing research.
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ON THE EXISTENCE OF GAUSSIAN NOISE!
Don H. Johnson and P. S. Reo
Computer & Information Techrology Institute
Department of Electrical & Computer Engineering
Rice University
Houston, TX 77251-1892

ABSTRACT

The dependence structure and the amplitude distribution of
stationary random sequences are linked, with specification
of one placing constraints on the other. Time-reversible
processes can be Gaussian or non-Gaussian, but all Gaus-
sian processes must be time reversible. We examine the
thermodynamics of measurement, showing that while “in-
formation” can be extracted from a system withou! altering
system entropy, most measurement techniques irreversibly
alter thermodynamic state with a consequent entropy i»-
crease. Because of the second law of thermodynamics, such
entropy changes cannot be undone and measurements re-
flecting thermodynamic state cannot be time reversible.
We conclude that physical measurements are not time re-
versible, implying that only non-time-reversible processes
model physically relevant signals. Consequently, Gaussian
processes would seem to be imprecise representations of
physical measurements.

I. INTRODUCTION

The Gaussian process is unquestionably the most prevalent
model of both signals and noise ic communication, control,
and signal processing theory. For many reasons, this pro-
cess yields analyticaliy tractable results for a wide vaniety
of application problems. Severs! important signal process-
ing tools based on the Gaussian model are the matched
filter, the Kalman filter, and the Wieger filter. Despite
its theoretical importance, the fundamental equations of
physics impose few coastraints on the amplitude distnbu-
tion of noise and, to the suthors' knowledge, the stationary
Gaussian stochastic process does not emerge as the solu-
tion of any physical problem. The Central Limit Theorem
{CLT) stands oul as a possible exception to this supposi-
tion. However, the convergence of independent superim-
posed processes to the Gaumian is ssymptolic; an infinite
aumber of proces.es does not exist physically and the CLT
canpot be used to justify the Gauvssian model on physical
grounds.

Pecently, resesrchers have realized the prevalence of
demonstrably non-Gaussian noise in physical measure-
ments {6,7) and sigral procersing research has increasingly

"Supported by grast NOWO! 4493152 Crem the Ofce of Naval
Ramesrch

turmed to developing signul processing algorithms that ap-
ply to non-Gaussian noise problems.! While th- equa-
tions governing physical phenomeusa do not directly con-
strain the probabilistic amplitude distribution of physical
variables, they do constrain the statistica! spatio-temporal
dependence properties (correlation, for examplej of signals
we might measure. We usually interpret temporal depen-
dence through the power density spectrum; in this view,
only s constant power density spectrum would be free of
tempural dependence. For example, temporal correlations
are induced on propagating ccean acoustic noise by the
filtering characteristics of the medium [13]. A somewhst
different dependence property of stochastic signals is the
notiva of temporal symmetry, where time-reversed sample
functions are tested for membemhip in the original pro-
cess. As we shall see, a process’s tempornal symmetry canno*
be judged from its spectrum. When viewed from the per-
spective of familiar Gaussian-based random process prop-
erties, this sample-function preparty may seem subtle since
power spectnun measurwnents cannot determine tempo-
ral symmetry. However, the process’s temporal symme-
try restricts what amplitude distributions the process may
have. Because physical laws tend to place constraints on
admissible signal’s temporal properties, we use these to pre-
dict what smplitude distributions physically possible sig-
pals may have

I1. TEMPORAL SYMMETRY

A stationary process {X,,t € T), is temporslly spmmei-
re if for every ty,...,1, for all n, the mndom vectoss
{Xu,-- X} and {Xgoy,- oo Xg=sa ). ¥ to have the same
joint probability distnibutions {€,14}. Thus, for s tempo-
rally symmetric process, time-reversed and delayed sample
func. 'ns are also sample functioas of the original process.
With this definition, tempors! symmetry is a statiocary
process property having no gredations: s process i tem-
porally symmetric or it's not. For example, consider 2
tero-mesn, Gaussian process; for all such processes, the
covaniance functios completely characterizes the joint am-
plitude distribution. As s stationary procem’s covarance
function depends only on the magnitude of the difierence

' We take “n0o-Gomsiaa" 1o crprem asbilnury amplitede distnide-
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between the two sample times—E(X, X,,] = f(|t: - t2])}—
be the process temporally symmetric or not, the covariance
function is 8 temporally symmetric quantity. Consequently,
all stationary Gaussian processes are temporally symmet-
ric. Weiss [14] showed that the ouly discrete-time linear
process-—stationary time series generated by passing white
naise through a linear, time-invariant system—that could
be temporally symmetric is the Gaussian. Consequently,
all pon-Gaussian linear processes must be temporally asym-
metric. Nonlinear processes may or may not be temporally
symmetric {4]. No basic result akin to Weiss'’s for catego-
rizing nonlinear processes is known. '

Because the covariance function is by definition s tem-
porally symmetric quantity, a process’s temporal symmetry
cannot be examined using second-order statistics, such as
the power spectrum. To illustrate this point another way,
we can manipulate the temporal symmetry (and the am-
plitude distribution as well) of a nsa-Gaussian process by
linesr operstions that have no effect on the power spec-
trum. Pass a non-Gaussian process through an all-pass fil-
ter, which by definition only affects its input’s phase. This
phase change mod fies the dependence structure of ths in-
put, resulting in an output having a diferent dependence
structure and & different amplitude distribution. The power
spectra of the filter's input and output arc identical since
the power spectrum is insensitive to phase distortions. The
Gaussian process’s insensitivity to phase may seem “un-
physical”, a notion we are about to argue for. Quantities
sensitive to temporal symametry are the bispectrum (8] and
the conditional mear [4,11]

Other aspacts of a signal's dependence structure are af-
fected by the amplitude distribution. Consider all f-st-
order autoregressive processes parameterized by rhe pole
location ¢. Given a Gaussisn amplitude distribution, any
value of a (corsistent with stability criteria) is possible:
all first-order depencence structures are compstible with
the Gaussian amplitude distnbution. The Gaussian is no?
unique in this regard; for discrete-time signals, all ampli-
tude distributions in class L are compatible with all first-
order dependence structures {11]. Among these are the
stable distnibutions, the Laplacian, and the hyperbolic se-
cant {10]. For other smplitude distnbutions, not all wlues
of a are compatible. Perhaps the mast stoking is the unj-
form amplitude distribation; first-order AR processes exist
that have s uniform smplitude distribution, but the param-
eter a can only equal £1/2,2£1/3, ... For this and other
nc 2<clas L distributions, the amplitude distribution's form
has a direct impact ou its dependence structure.

For our purpases, we stress the close coupling between
a process's temporsl dependence structure and its ampl-
tude distribution. If we can show that a process cannot be
temporally sytnmetric, we must conclude that it cannot be
Gaussian. This constraint alows us to explore the amphi-
tude distnbutica of processes governed by physical laws by
cousidering t-mponal dependence struciures.

Measurement
System

| SO

v
3
o 8
3

- ah s W hh ae e e e e e e e e

Thermodynamically Clased

Figure 1: The measurement system extracts information from
the physical system. We consider the two together as thermody-
pamically closed, not interacting with other systems.

III. THERMODYNAMICS AND
MEASUREMENTS

Virtually all signal processing algorithms are applied to
measurements taken from some physical system (figure 1).
We presume that the measurement process is not intended
to modify the physical system. Instead, the intent is to cap-
ture some time-persistent aspect of the system. We thus
expect to mod . the measurement’s “random” components
as a stationary process. Non-statistical components are of-
ten present too. For example, the physical system could be
& communication channe] whers the signal represents dig-
ital data and the random component i3 additive channel
noise. The signal reception process should not, in engineer-
ing jargon, “load down" the transmission system, continu-
ally changing its characteristics. Under these assumptions
on the measurement process, we can justify using station-
ary stochastic models to describe the noise, enabling us to
derive appropriate signal processing procedures.

The effects of measurement on & physical system can be
quantified by considering thermodynamics. The key con-
cept is thermodynamic entropy. Loosely speaking, a sys-
tem's entropy S is defined to be kln P, where k is Boltz-
mann's constant and P is the number of accessible micro-
scopic states. The Second Law of thermodynamics states
thit a closed system’s thermodynamic entropy can never
decrease and that entropy increases are propottional to the
work extracted from the system.

AS5>0 and AW =TAS

Modern stuldies in the inermodynamics of computation
bave clanified this classic, but ill-defined. concept of entropy.
Ore particularty illuminating definition due to Zurek {15}
expresses thermodynamic entropy as the sum of two terms.
The first is the Shannoa entropy H = — ¥ plogp of the
probability distribution of the system's state; the second is
the elyonitAmic eatropy K defined as the length of shortest
possible description for what is known about the system.?
The algorithmic entropy might be defised as the loganithm
of the shoriest passible Tunng machive program needed to
descnbe what is known about state Thus, the first term ex-
prases what any device or perscn does not “kraw” about a
syniem’s state—the uncertainty—and the second exy.resses

¥We bave a0 stlempt Lo rake D units of eairopy sgres amceg the
vancus eblzopy defastions. Thw paper w moare concerzed with concepts
than detsls. o Lhe end, eack musl be muitiphed by Boltzmass's
constast and the logariibos have o comeoe satural banse
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what is known.
S=H+K

Note that this definition is “human-free:” a person need
not be present to make the measurement; devices such as
A/D converters are encompassed by these definitions.

This definition for thermodynamic entropy clarifies dis-
cussions held over more than one hundred years about
Maxwell's demon [1,2,3,12]. In 1871, Maxwell described a
“demon” that, by measuri:ir mnolecule positions, could ea-
able a machine to do work v.: .uout increasing entropy. Only
by recognizing the role of measurement has the demon been
reconciled with the Second Law of thermodynamics. Orig-
inally, Szilard in 1929 [12] and Brillouin in 1962 (3] argued
that measurement of any physical 7ariable must be accom-
panied by changes in the information content (proportional
to the Shannon information) of the variable. This measure-
ment translates uncertainty in system state into certainty
and thereby increases the algorithmic entropy. Using mod-
ern terminology, they sncorrectly argued that balance be-
tween state uncertainty sod knowledge could not be main-
tained (AH > —-AK), and they concluded that work must
be performed in the measurement process with a concomi-
tant increase in thermodynamic entropy. This work would
exactly balance the work seemingly provided by Maxwell’s
demon and thus uphold the Second Law. However, these re-
searchers did not explore whether a more efficient technique
existed for performing the required measurement. Based
on his work on reversible computation, Bennett in 1982 {1,
showed that balance between AH and AKX could bs main-
tained theoretically and that measurement did not neces-
sarily increase total entropy. Bernnpett noted that the demon
must return to its original state to initiate arother cycle
of measurement and work. To retum to the original state
means discarding the just completed measurement; destroy-
ing the certainly gained by measurement takes work and
this work balances the decreased algorithmic entropy (15].
Thus, a detailed analysis of infonu.ation transfer explains
why Maxwell's demon does satisfy the Second Law.

In most physical cases, performing s messurement does
take work, meaniag that the measurement system coasumes
power and that the thermodynamic entropy of the com-
bined physical and measurement systems incresses. Ideally,
if sufficient care were taken in the measurement process
and the detailed information gleaned was pever destroyed,
overall system entropy would be constant. Since such ideal
circumstances rarely exast, measurement in mosd, 1f not oll
phyncal syitems 1 not thermodymamicelly reverndle: once
the measurement process has increased thermodynamic ea-
tropy. the measurement cannot be undone precisely (algo-
rithmic entropy precisely traded for uncertainty). Accord-
ing to this view, a sequence of measurements, which we
express by a scalar-valued time series X{1), are mast of-
ten odbtained by increasing thermodynamic eatrupy. These
increases do not necessasily mean that the entropy of the
physical system being messured has incressed. Theoreti.
cally, & prion upcertainty can be exchanged for measure-
ment cedtainly without increasing eatropy. Consequently,

measurement does nccessarily not “loas down” the phys-
ical system and the resulting measurements can be well-
modeled by a stationary process.

Be that as it may, the measurement process ¢annot be
reversed for two very different reasons. First of all, the
work expended in making the measurement cannot be re-
turned by undoing the measurement process: entropy has
increased and cannot be decreased to provide the neces-
sary work. .Secondly, and most importantly, to the degree
that measuremnents are directly associated with certainty
about system state, the time-reversed sequence of mes-
surements cannot be equivalent to a measuremeat sequence
from the physical system. Such temporally reversed mea-
surements would seemingly represent undoing the measure-
ments, thereby corresponding to increasing system uncer-
tainty, while maintaining constant knowledge about state
(afier all, the measurements are in hand). Signals thus ob-
tained by physical megsurements cannot be temporally sym-
metric. This critical fact obviates any stationary stochastic
process model for signals or noise that is temporslly sym-
metric.

For these physical reasons, Gaussian random process
descriptions of messured signale would seem to be an ab-
straction without a physical basis. To recap, all station-
ary Gaussian stochastic processes are temporally reversible;
processes modeling measurements cannot be because of the
Second Law. Thus, non-Gaussian processes provide the
only viable model for physical measurements. However,
temporally symmetric non-Gaussian processes are also in-
appropriate; because of Weiss's theorem, such processes
must arise from nonlinear models. Temporally symmet-
sic non-Gaussian processes that describe physical measure-
ments can be produced by both linear and nonlinear mod-
els [11]. Our interpretation of thermodynamics has not
produced further restrictions on possible random process
models for measurements.

Iv. DISCUSSION

Because of the Second Law of thermodvnamics, measure-
ments convey the coaversion from informaticn-theoretic un-
certainty to algonthmic {measurement) certainty. Tempo-
rally reversing the time senes could not represent the same
measurement process as the reversed time series would sug-
gest a physically impossible situation: the continval ea-
tropy transformation from its algerithmic to its uncertain
form without a net eatropy increase. Based oa these physi-
cal restnictions, the most sccurate stochastic pracess models
for data are temponally ssymmetric onex.

The use of Gaussian processes ia sigoal processing would
thus appear to rest on weak ground, justifying coasiders-
tion of altemate, nca-Gaussian signal processing strategies.
The structure and properties of non-Gaussian stochastic
processes ceed 0 be understood befare physically relevant
subsets of this class can be selected. Once the process class
that accunitely models measurement has been defined, the
signal processor would naturally seek sigeal processing al-
gonithms thet could exploit the structure impased by the
measurement aod best glean the information coatained @
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the daia. Unfortunately, optimal non-Gaussian signal pro-
cessing operations are not equivalent to the Gaussian ones.
Detection theory provides one example. The matched fil-
ter applies only to Gaussian noise problems; optimal detec-
tion for non-Gaussian noise demands alternative structures.
Furthermore, the analytic simplicity provided by the Gaus-
sian process rarely carries over to non-Gaussian problems.
Few statistical signal processing algorithms have been de-
veloped that sre tailored to the amplitude distribution as
well as to the temporal dependence structure.

We couid apply Gaussian-based algorithms to non-
Gaussian problems. Taking snother example from deten-
tion theory, one could use a matched filter (linesar) detector
for & non-Gsussian noise problem. However, this filter's
unit-sample response is not proportional to the signal as
it is for Gaussian situations {3}. Furthermore, the per-
formance for the optimal Linear detector can greatly sur-
pass that designed for the Gaussian problem. How much
the optimal linear detector degrades system performance
when compared to the optimal one is not known. We need
to specify how to vary Gaussian-based strategies for non-
Gaussian problems and to quantify the losses incurred when
Gaussian-based systems are used in physical situations in-
stead of those keyed to physically sccurate non-Gaussian
models.
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NONPARAMETRIC PREDICTION OF NON-GAUSSIAN TIME SERIES

Y. Kang Lee

Don H. Johnson

Depntment of Electrical and Computer Eagieering
Rice University
Houston, Texas 772511892

ABSTRACT

In this paper, we apply the nonparametnc kernel predictor
to the time-series predictics problems. Bacause nonparamet-
ric prediction makes {ew assumptions ascut the waderlying
time series, it is wseful when modeling uncertaisties are per-
vasive, such as when the time series is noa-Gausian. We
show that the nonparametric kermel predictor is asymptot-
ically optimal for bounded, mixing time series. Numerical
experiments are also performed: For the nonlinear aatore-
gressive process, the kernel predictor is shown to greadly
outperform the linear predictor; for the Henoa time series,
the estimated predictor closely resembles the Henon map.

1. INTRODUCTION

Time-ceries prediction is & problem {requently encounterer
in maay branches of science and engineenng. In this pro’ -
lem, we wouid like to predict future values of a time series
based oa its present and previous obeervatioas; coasider, for
example, lincar pradiction. In practice, this predictioe pro-
ceas consists of two steps: estimation of the predictor {roma
all available observations, followed by prediction of a futare
Lime-series value by cvalvating the atimaied predictor us-
ing preseal observations. Clasncally, tae estimation of the
predictor has been mimplifed by the assumption of a pare-
melric moddl of the lime series, 30 Lhat th: optimen predic-
tor can also be descnibed parametncally. As & resuit of this
amplificatioa, the predictor estimation process i greay
redsced to the task of esimating only a faitz :wmber of
parameters. 1a the familing case of Lisear prediction, we
assumne the mgnal, e.g, speech, Lo be Linear agio-regresmve
{AR). The correspasding predictor is Lhes formed by ati-
mating, oltes very eficestly, e g, via Levinsca's dlgodithm,
the coefBaeats of the linear model

Nomparameirsc predichion provides sa altersative 1o lhe
clamsical methods of Luear and higher-order prediction whea
patametnk specificaticas br (he lime moics are atder ua-
evailahle or dublosz TR appreach saly sstswes idat 152
asodel decnbing the time senves is smooth. Whereas s pars-
metnc Bt s global and spans all of state space, 2 noapars-
meine estimator St data locally by takiag wdvastage of
the smootdsem cosditic™ The dase of pusuble redation-
ships 13 ZOERATAMEINC couumation is equivalert 1o the clam
of smoold famctions, wh' - is dearly 00 larpe 10 be pa-
rametenised. la & sense, we imay coatrast pasameinc and
soeparametsic estumalion by the amamphiois they make:
_ The parametnc metbod requures guanhishe: speaications

“Work mpported ia part by the ONR uader gran NOOT14-
®J-ne -
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as opposed to the gualilative assumptions made in non-
parametric estimstion. Effectively, noaparametric predic-
tion makes only modest assuruptions, making it amenable
when modeling uncertainties are pervasive.

3. NONPARAMETRIC PREDICTION

Based om obeervatioas X;, Xi,..., X~ of staticaary time
series {Xa}, we want to estimate Xnyy usizg a p** order
predictor: Based on the most recent p obeervations, nota
tionally summarised by Xy = {Xw,..., X n_p41], estimate
Yu.n That is, the predictor of Xn4; can be written as
an = #(Xn), where #(-] is some function that maps R’
to R This functioa is usnally nnknown and must be es
timated from daia as well. This paper dces not addroms
the order determination problem and assumes that predic-
tor order p it known. The interested reader caa refer to
{1] for an order selection teshnique based oa nonparametric
Te25100.

the mean square error (MSE) criterioa is used, the
optimum p'* order predictot of Xy, is the coaditional
expected valwe of Anyy giver Xy, ..., Xnopy:

,\‘*x = EIYN§XIXN}

The coaditional expectation above is 3 raadom wanable
measurable witd respect o the e-algeben of [Xw,...,
Xw-py1] aad can thereiore be expressed as

EXpar{Xn] = r(Xn).

where r{-) is & fumction Lal mape from R® ta K We call
r(-} the condi’'tonel mean funciron.

2.3,  Kernel Predictor

In practical minstions, the conditicaal mean functicn w wo-
knows axd must De rstimated from data. Ia 1bis estima
tica procese, we scarch for a mappisg that best desciibes
the cawsal telalionsiip belwees random vector X, and ras-
dom variable Xoyy based an their obmervations {X,, X,.3)
{Xpet. Xpas), oo Xy, X} {we Dave abbreviated vec-
tor {Xe. .., Xavpai] a3 Xo). We shall refer to each ob
servatios vector Xa a8 a predictor wector sad each scalar
obeervatica X4 as the response cotTeposding o predic-
tar vector Xa.

A parametrc metbod seck as Linear prediction smumes
that r{-) 1s imcus, thus constraamuag the estimate Lo be En-
ess. The acaparametic method does sot comstrain the
{orm of Lhe estimate. By taking advastage of the smootd-
sews of r{ ), the noaparimetne dernel regression estemctor,
the aceparametinc esumator of the coaditional mean fuzc-
Goa a1 2 powst X € R’ conmsts of baily averagag the
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Figure 1. Scatter Plot and Kernel Regression Estimate

responses Xn.;; corresponding to those predictor vectors
within a neighborbhood of x
D ) Xons
N-=1 X - Xm )
zr ( -
In the numerator of {1), kernel K(-), slong with bandwidth
Ax, playe the role of a weighting function *od assigns a
weight to sach response Xa,, based on the distance be
tween predictor vecter X and x. A() is generally positive
and decreases from the origin; oae example is the multivan-
ate Gausvian function. Hence, response: corresponding to
predictor vectors close to x are weighed mote heavily aad
have more effect than those with predictor vectors afar. The
bandwidlh parameter Ay has the role of controlling the ex-
tent of the local neig’.bothood about x. A large bandmdth
allows more responses {corresponding to predictor vectons
arcund Xx) 1o be averaged, and a small bandwidth bas the
opprosite effect. Choosing an appropriate bandwidih s cru-
dal for a good estimale; this is discusscd in the next sec-
tion. As a general rule, tbe bandwdtl will decrease as ¥
increases because local volomen will be Rlled more densely
when more data become available. The desomisator in (1}
nmply serves 1o sormalize Lhe wagkiiag ot the resposses.
As x vanes wibia i1ts dommn, the kerwel estimatot can
be viewed as 2 moviag avetage in predictor-vector space,
as oppouxl to the uscal mo‘ioa of a moving average in
ume. Figere | shows the scatter plot {Xa.y verszs X}

of N -1 100 sampies of the first-order sonlinear astormgres-
uve (NAR(1)) umne senen

xx..

7(x) = (1)

Xaor = 2ma(Xa) + Wa,, Wao~wid N0

Tae tree conditioral expectation r(z} = 2na{s) is shown
by the dashed curve. Also shows 1s the kernel regremsios
estimstor £(2) inside the interval {3 2,3.0}; it 8 competed
wnng 8 Gansaan berned wmith 2 bardwidth of A = 0.23.
At £ = —1.0, we show Low the respoases are miadowed
to pivduce the correspording estimate a3 indicated by the
- astetizk. The kernel extimator ropres sts & satural aad in-
teitive esum iior of the conditicaal meaa fonctica becavse
the conditicaal wneis is notking but the local average of the

.
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Figure 2. Over-smoothing and ' '.dec.smoothing

responses within a {infinitesimally} - all n=ighborhood of
the conditioned predictor vectc
Completing the prediction p:  css, we evzluate the kerne

regression estimator 7(-) at the yresentpredictor vector x =

X ~. We can thes write *'  kernel predictor of X p 4y 28
Xnpi = #(Xn). (2)
2.2. Bandwidth Selection

Selecting an approprizte bandwidth is crucal for good es-
timates. If the bandwidth is too large, over-smoothing oc-
curs. Likewnse, if the bandwidth is too small, the resulling
estimate is under-smoothed and jagged. See Figure i

To be conmistent with the noaparametnic nature of the
kereel predictor, the selection of the bandwmidth skould be
bSased on information inherent in tke data and not o 2 pri-
ory, possibly iraccurale, acrumptions. Sech 3 dato-driven
techaique, called cress wvalidation, his gained wids-range
sapport among staliziicians and limesesies analysts. De
fine tke “leaveone-oul® regression estimator £ .a{x) as fol-
lows:

ok ()
E:::.-uw K (:S—‘:,

The appropnately named leavecpe-out catimadeor % A (X) s
ke kersel regression esumator of {1) computed without on
ing the pair (X.. X417, The cross sahdstronfuactioa OV ()
ts the sammple prediction ercor vang the jeave-oni-out esti-
malor as the predicios:

s‘..g(!) =

w3
. 1 , .
CViAi= 7 E {(FoafX) = Xaga)

2 7]

The bandwidth A that minimizes CV'{.) is sefected azd veed
to compute the regressics eatimator #(-). This ousmiza-
tos s performed over all possible A values, and the coa-
struat set for A may rogsire some sehiectinty 13 c.Jer Lo
redece tie amount of computations. I #{-) were naed ia-
stead of /... ] %o compute CV(A), it caz be eamly sbown
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that CV(h) is minimized at & = 0, yielding a useless solu-
tion. The use of i a(:) effectively thwarts this singularity.
It is important to note that h is derived completely from
data and is consistent with the nonparametric natare of our
prediction method.

3. CONSISTENCY RESULTS

As we have already mentioned, it is difficult to specify joint
distributions of non-Gaussian time series. To analyze prop-
erties of estimators, however, certain specifications on the
dependence siructure of these time series must be made.
We therefore select a very general specification, called a
mizing conditior. [2], for the time series we analyze.

Theoretically, the two estimators that we have so far dis-
cugsed are different. The kernel regression estimator #(:)
is an (pointwise) estimator of the conditional expectation
function r(x), whereas the kernel predictor #(Xy) is the
estimator of the predictor r(Xn). We need to elucidate
the distinction at this juncture because consistency of one
astimator does not imply consistency of the other. The dif-
ference here is akin to the difference between pointwise and
norm convergence of & sequence of functions. Because cur
impetus is the time-series prediction problem, we should
concentrate on the analysis of the kernel predictor. Point-
wise consistency of the kernel regression estimator for ¢-
mixing time series (and others) has been shown [3]. See
also (4] for consistency results of the nearest-neighbor re-
gression estimator.

Next, we need to determine an appropriate mode of sta-
tistical convergence for the kernel predictor. Almost sure
consistency can be found in [3]. However, this does not
imply that the kernel predictor asymptotically matches the
performance of the conditional mean. For this teason, we
believe that it is inappropriate to analyze the a_s. or in prob-
abilityconvergence of the kernel predlctor Instead, it would
be more appropriate to analyze its [? convergence. Lee [5]
has shown that for bounded ¢, p, and a-mixing time series,
the kernel predictor is asymptotically optimal in the sense
that

E[f(Xn) - r(Xn)f 0.
The rate at which this convergence occurs depends on the
rates at which the mising coeffidents and bandwidth con-
verge to zero. For example, for an exponentially ¢-mising
txme series (i.e., its mixing coeflicient $x is proportional to

a*, a < 1), the kernel predictor converges at a rate of
E[#(Xn) = r(Xn)]* = O(hk +log’ N/(NRY))  (3)

Thus, consistency occurs if Ay 2= ¢ and (NW)/log? N &
oo. Using (3), the convergence rate can be optumzed by
taking the bandwidth to be

Ay ope o (N/log? N)""/(HR) .. 4)

Convergence is faster fur time series that have weaker de-
pendence structures (fast converging mixing coefficients). If
the dependence is too strong {mixing coefficients converging
too slowly to zero), the kernel predictor is not insured to
converge. The most rapid convergence occurs in the trivial
situation when time series samples are completely indepen-
dent.

It is important to note that the cousistency result above

*+ gpecifies only the bandwidth rates that are admissible. For

example, if Ay satisfies (4), so does Hhy, for some pon-zero
constant H. Clearly, the two sequences will yield different

Sevend-arder NAR Tiuw Sosies
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Figure 3. Snapshot of NAR(2) Time Series

errors, but the rate at which the errors converge will be the
same. Thus, bandwidth values that work in theory may
not be obtainable in practice. Cross validation can provide
somewhat of a bridge between theory and practice. In the
ii.d. setting (the usual setting for regression analysis), cross
validation is asymptotically optimal for the kernel estima-
tor, tut the rate is slow [6]. Unfortunately, little is knowa
in the time-series setting about cross validation for either
the kernel estimator or the kernel predictor. This remains
an open area for research.

4. EXAMPLES
Nonlinear Autoregressive Process

Consider the following second-order nonlinear autoregres-
sive (NAR(2)) time series.

14+ 4(Xao1 = Xa)

Xn-l-l =091+(X,‘__1 —-X,,)’

+ Was

with W, ~ ii.d. N(0,1). This time series is a gener-
alization of the well known linear autoregressive process.
Unfortunately, the nonlinearity makes X, very difficuit to
examine analytically. For example, we do not know its
(scalar) amplitude distribution, let alone its joint distri-
butions. In fact, we do not even know if it is station-
ary! Because (1 +4(z1 — 20))/(1 4 (31 — 20)*) is bounded
for all (20,1) € R?, X, has finite moments. The scalar
value 0.9 is used to normalize its variance to approximately
3.0. Its obsetved mean value is sero. See Fig. 3 for a
snapshot of 200 sample values. Even though the station-
arity of Xa is questionable, its conditional mean is in-
variant to time index n. Because W, is independent to
Xm, m < n, the conditional mean function is simply
r(ze,21) = 0.9(1 + 4(=z1 — =0))/(1 4 (2 - xo) ) for all n.
We test the kernel predictor at sample sises of N = 200,
5§00, 1000, 2000, and 3000. For each sample sixe, cross vah-
dation is per{ormed to select the appropriaie bandwidib,
The kernel regression estimate at N = 500 is shown in
Fig. 4; the linear estimate is shown for comparison sake.
A Gaussian kernel with a bandwidth of A = 0.40 is used.
The kernel predictor is then tested against the next 1000
samples. It is evident that the liaear predictor cansot
adequately capture the nonlinear relationship and, comse-
quently, performs pootly when compared to the kesnel pre

dictor. At N = 500, the kernel predictor has & MSE of
about 1.1, compared with 1.9 for the linear predictor and
1.0 for the optimum predictor, or about 95% of optimal

(because X has a variance of 3.0).
Chaotic Time Series

The kernel predictor can be applied to time series produced
by deterministic difference equation. It is likely to perform
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Figure 4. Performance Analysis for NAR(2) Tima Series
well with these time series because no noise is present. A
special case of such a time series is one that is chastic.
Consider the Henon time series (Fig. 5):

Xasr =1 - 1.4X2 +0.3X0y

with initial conditions .¥ ., = X = 0.0.

Figure 5. Snapshot of Henon Time Seties

The same prediction strategy as before is {ollowed here. A
scatter plot of X, the true Henon map, and regresmon esti-
mate st ¥ = 500 (viewed from two perspectives) are shown
iz Fig. 6. Predictioa etrors ate negligible, from ¥ = 50
on, and therefore not shown. Because the kernd estima-
tor performs local averaging of data, estimates arc made
only at those jocations where data aggregates. Although
little inference can be made for the map at all locations,
the resulting estimate is effective for predictios purposes.

5. CONCLUSIONS

Nonparametnc time-senies prediction provides an altersa-
tive Lo the classical methads of linear aad higher-order pre-
dictios. Because it makes only modest, qualitative sasump-
tions, sonparametric prediction may be applicable even
when little is kaows about the time series under stedy.
Such situations anse whea the time senice is seither Lia-
ear not Gaunssiaz. I» light of present-day emphasis on non-
Ganssian ngnal processing, it woald seem Riling (o iscoe-

. porate ponparametric predictior into the analyst's toolbox.

Open questions for further investigation remaia. The
most 3otable is a way to mitigate the effect of the “curse

Henan: X(a+1) +5. X(n)
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Figure 6. Henon Time Series: Scatter Plot, Henon Map, 2nd
Regression Estimstes

of dimensionality,” so called because nonparametric meth-
ods require a large amount of data for dimensions higher
than about three (p > 3). This shortcoming needs to be
overcome before problems like target tracking and speech
modeling can reap the benefits provided by nonparametric
prediction.

In the case of chaotic time series that are produced
by noalinear iterative equations, nonparametric prediction
performs well becanse no randomness is present in the re-
sponses. Because little averaging is needed, dimeansiouality
effects are not as severe as for stochastic time series. Noa-
parameinic prediction seems to have much potential in this
area {1, 7, 8].
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Generation and Analysis of Non-Gaussian Markov
| Time Series
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Abstract—Corvelated non-Gaussian Markov sequences can be
considered as filtered white noise (independent, identically dis-
tributed sequences of random variables), the filter being a non-
linesr system in general. We discuss the applicability of linear
models and nonlinear methods based on the diagonal series ex-
pansion of bivariste densities for analyzing thls system. Non-
Gaussian sequences exhibit different properties in the forward
and backward directions of time. We explore the connection to
system modeling of this temporal csymmetry and some of its
consequences. As an example, we analyze a first-order linear
autoregressive model with hyperbolic secant amplitude distri-
bution at its output.

I. INTRODUCTION

THE signals and noise encountered in the signal oro-
cessing environment {e.g., ccean acoustic noise {19])
are often not Gaussian. Be that as it may, many signal
processing algorithms are based oa the assumption that
the signal, or noise, or both are Gaussian. Even when the
apprepriate ron-Gaussian amplitude distribution is used,
the samples are assumed to be independent or at least un-
correlated. The performance of algorithms which ignore
the non-Gaussian nature of the input and/or the depen-
dence structure is seriously limited when the algorithms
are inappropriately applied. A common way of account-
ing for the dependency of non-Gaussian data is to model
the process as & pointwise transfonnation of a correlated
Gaussian process. Although this msthod facilitates casy
generation of dependent processes, it yields an analyti-
cally complex dependency structure which is insufficient
to describe the possible range of dependencies {18]. De-
velopment of new algorithms which take into accoun: the
non-Gaussianity and correlation structure requires an in-
depth study of the properties of non-Gaussian time series
and how they can be modeled and generated.

The correlation function is inadequate in capluring the
dependency structure of a non-Gaussian time senies; only
the multivariate Gaussian density depends solely on the
covanance matnx. Ancther reason for this inadequacy is
the intriguing fact that non-Gaussian processes often ex-
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hibit different properties in the forward and backward di-
rections of time quite unlike Gaussian processes. In the
sequel, we shall refer to such processes as being ‘empo-
rally asymmetric.' The inherent symmetry in the defini-
tion of correiation function makes it insensitive to tern-
poral asymmetry and reduces its ability tu capuare the
dependence structure of a non-Gaussian nrocess. What
aspects of non-Gaussian sequences are then important in
specifying their properties? How can they be exploited in
signal processing algorithms? A key issue in developing
analysis tools that c2n be used to aasw er theo quesiions
is how to model the generation of non-Gaussian signals.
That is, given a specification of a non-Gaussiai signu,
how can it be produced by a possibly nonlinear system
operating on an ¢iementary random sequence? Gaussian
signals can be generated by passing independent, identi-
cally distributed (i.i.d.) Gaussian tim series through the
appropriate linear system. For non-Gaussian signals, are
nonlinear systems necessary? If so wnen?

Before attempting to answer these questions, we make
two simplifying assumptions. First, we assume that the
signals are (strict-sense) stationary. Second, we assume
that thie signale ars Markovian: the generating systems of
such signals are chamacterized by a small number of
“states.”” Making ase of the relatively new theoretical
notion of iemporal symmstry, we will discuss the suit-
ability of linear models for non-Gaussian processes and
then propose a technique for developing nonlinear models
for a class of these processes.

II. TeEMPORAL SYMMETRY

All stationary Gaussian processes are symmetric with
respect to the (discrete) time axis: a time-reversed sample
function X_, of a Gaussian process is also s sample func-
ton of the same process and is thus statistically indistin-
guishable from it. Non-Gaussian processes do not neces-
sarily exhibit this symmetry. For example, sunspot
number data collected since the year 1750 have heen noted
to fall more rapidly than they rise {3]. Neural discharge
patterns have aiso been found to be asymmetnc with re-
spect to time [14).

Definition: A sutionary process {X,.n =0, + 1, -}
1s temporally symmetric if the random vectors {X,,, X,,.

‘The term rime reversnibility haa been used it the liteawiure. See for 2x-
ample {32). {17].

1033-387X792803.00 & 1962 IEEE




« oo X} and {X_p, X ¢+ X_} have the same joint
distribution for all kand n;, 1 < i < k [32].

Temporal symmetry of Gaussian processes follows
from the fact that the joint distribution of the amplitudes
of a stationary, zero-mean Gaussian process is completely
specified by the covariance function, which is by defini-
‘jon symmetric for all processes, Gaussian or not:
E[X,X,] = ElXy -nXd = E[X_,,X_,] follows from
stationarity. Weiss [32] showed that all autoregressive
moving average (ARMA) non-Gaussian processes (i.e.,
chose that satisfy a linear difference equation of the form
X, =LN, aX,.; + LfugbW,_;, where {W,} isani.i.d.
sequence), with the exception of purely MA processes (a;
= () with even or odd symmetric coefficiznt sequences,
are temporally asymmetric. Hence, the only temporally
symmetric linear process is the Gaussian. Nonlinear non-
Gaussian models on the other hand, may or may not be
temporally symmetric. The importance of the concept of

temporal symmetry stems from this close association with -

the linearity/nonlinearity of non-Gaussian models.

Clearly, to znalyze fully the temporal symmetry of a
siationary process, we must deal with joint distributions
of the amplitudes of the process at arbitrary times, not
simply second-order statistics. Since we are dealing with
Markov processes, it is sufficient to consider bivariate dis-
tributions (more on this in the next section). The bivariate
distributions of a temporally symmetric process are sym-
metric functions:

PXA.XI(“- )?) = px—t.X—l(x' )')
= pr.xa® ¥Y) = Pox (¥, X)

.ing temporal symmetry, stationarity, and a simple reor-
dering, respectively. On the other hand, the bivariate dis-
tributions of ">mporally asymmetric processes are not
svinmr 3tric functions. This fact may appear te be counter-
intuitive since the ma- inal amplitude distributions at any
two time inst=wits must be iden*ical due to stationarity:

g _Px..x,(x» ndr = E Oan,(Z‘ y) dy = pf2)

These equations must hola whethes the joint amplitude
distributior: i3 symmetric r not (i.¢., the process is tem-
perally symmeuric or not). Several :xamples of asymmet-
nc joint distributions with equal marginals are given
throughout this paper. A ¢ominuous-time example of an
asymmetric Markev process (constructed using asymmet-
nc bi ariste densities) is given ia [32].

The measurement of the joint dist..bution function is
highly data inteasive, and hience the auestion arises as to
which quantitics are maximaily sensitive to the statisiical
prop=rties of an ohserved sequence, pariculady its tem-
poral svmmetry, and how these quanuties can be used in
system identificition pioceduser. The chosen statistics
must not be fundamentally symmetric quantities, like the
comrelation function, in order to capture any temporal
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asymmetry of the time series. Joint asymmetric averages
(e.g., E[X:X ') have been suggested for this purpose [6).
Bigher order spectra have been shown to be suited for
parametric linear system (ARMA) characterization [24].

The statistics having possibly more utility are the con-
ditional expectations E[X, | X, - ;] and E[X, ;| X,] as they
can be used even when the generating system is nonlinear.
These quantities, which we shall refer to as the ‘‘for-
ward'’ and ‘‘backward’’ conditional means, are not in-
herently symmetric with respect to their arguments and do
provide information about the dependency structure of the
sequence: if these two statistics are different, the se-
quence cannot be temporally symmetric.

Consider, for example, the joint dictribution

px.'x__,(x,y)=§6(x~;y+})+§6(x-§y-—§),
-31SxySs.

Clearly, this joint density is asymmetric while its margin-
als are uniform over [—#, 4. Its conditional means are
calculated as the means of its two conditional probability
densities py,|x.., (*|y) and px,_,jx (¥|x). As the marginal
is uniform, the conditional densities have the same func-
tional form as the joint distribution. Respectively, the for-
ward and backward conditional means are found to be

EX, |X -1 = %X«-x;
E{X,.\|XJ = 2X, mod | - 5.

The forward mean is affine while the backward mean is
discontinuous; this difference clearly demonstrates the
remporal asymmetry of the associated process if it exists.?

The other possibility, namely the identicalness of the
conditional means is, however, insufficient to prove the
temporal symmetry of the process. After developing more
insight into the structure of non-Gaussian Markov pro-
cesses, we shall retum to the properties and applications
of conditional nicans.

ITI. NON-GAUSSIAN MARKOV PROCESSES

A randutn process (X,} is Mth-order Markov if its con-
ditional probability densities have the property

4 X} A% NETI vy o)

’ L-u(x,YIv Ut yﬂ) (])

forall n. If {¥,} is also stat’onary, these conditional den-
sities do not depend on a. The process {X,} is said to be
compleiely specified if all joint densities of amplitude« at
difere .t instants are known. It follows casily that station-
ary Markov processes are completely specified by the
conditional density fur:tion given above. If the process
is first-order Markov, - = conditional densities can be ob-
tained from the *‘tren-iional deasity” pyrix..,(*]°) by

il 2 AP TR

A process having these chatacienistics is casily defined and will be dis-
cussrd io the next section




using the Chapman-Kolmogorov equation {7, p. 89]
Pxlx-o51Y)

= SPx.lx.-.(XIZ)Px.-nx.-.(Zl)') i, m=z2 @

Thus the transitional density or equivalently the bivariate
density pyx, x..,(x, y) completely specifies the fitst-order
Markov process.

The definition of Markov proce==~s given in (1) is one
sided and gives the impression that . Markov process has
an inherent direction of time, namely, past amplitude val-
ues specifying the statistical properties of the present. One
might conclude that a time-reversed Markov process is no
longer Markov. However, an equivalent definition can be
given in terms of the conditional independence of the past
and future, given the present. From this symmetric defi-
nition, it follows that if {X,} is Markov, so is {X_,} [7,
p. 83]; this result can also be obtained directly from the
the one-sided definition above {22, p. 386). However, the
two Markov processes, the original and its time reversed
version, may have different characteristics and hence be
temporally asymmetric. In the case of a first-order Mar-
kov process where py, y,_, (x, y) is a symmetric function
of x and y, it follows from Chapman-Kolmogorov equa-
tion that py, x._.(x, ¥) is also symmetric forall m = 2
and as a result, it is easily seen that the process is tem-
porally symmetric. Hence a first-order Markov process is
temporally symmetric if and only if py, x,_, (x, ) is sym-
metric.

If the Markov process {X,} is Gaussian, it can be gen-
crated by an all-pole, Mth-order linear system described
by

Xe=aXeai v X, g+ tauXe-n t+ W, (3)

where {W,} is an i.i.d. Gaussian sequence. Processes
generated in this fashion are often referred to as being
autoregressive (AR). Autoregressive models are quite
commonly used in diverse areas such as geophysics and
speech processing [20].

Non-Gaussian Markov sequences may or may not be
generated by linear autoregressive systems, but they can
be considered as a generalization of AR sequences, which
are known to have a simple statistical structure. To obtain
the genenstion model of non-Gaussian Markov sequences,
we must begin with the conditional density function. Sup-
pose {U,} is the output obtained by passing & Mth-order
Markov process {X,} through a system having the input-
output relationship given by the conditional distribution
function (cumulative)

U, = PLIL—).'“L-u(XnIxa—h T, X-—H)- 4)

{U.} is then i.i.d. and uniformly distributed over [0, 1]
(22, p. 181]. Thus, this system is the equivalent of **whit-
ening' filter for Gaussian time series and yiclds the in-
novations sequence {U,} corresponding to {X,}. Typi-
cally, this system is nonlinear with a finite number M of
states. Being a distribution function, the above input-out-

D Uy —— Pz ety ) f— 1,

Fig. 1. Generation of a Markov sequence of order M.

put relationship is monotonic and hence can be inverted
to give the generating system of a general Mth-order Mar-
kov time series:

> AL D AT (/A ). ARPREEEIN A% N &)

This generation model is shown in Fig. 1. In the Gaussian
case, this generating system takes the form of a memo-
ryless nonlinearity, which transforms the i.i.d. uniform
sequence to an i.i.d. Gaussian sequence, followed by an
all-pole linear system. In the general case, the memory-
less nonlinearity is usually present, but is followed in gen-
eral by a nonlinear system having memory. In either case,
specification of the conditional distribution function leads
to the system that generates the process.

A. Non-Gaussian Autoregressive Processes

Very often, inversion of the conditional distribution
function is extremely difficult in practice. Sometimes the
conditional distribution function itself may not have a
closed form. To proceed further, we first explore linear
models: from the above description, we assume that the
memoryless nonlinearity transforms the i.i.d. uniform se-
quence into some intermediate non-Gaussian (i.i.d.) se-
quence which is then passed through a linear filter. We
are thus led to AR(M) models for non-Gaussian se-
quences. Validity of a lincar model can be verified in
practice and we illustrate this here. From now on, we will
focus attention on first-order Markov processes (M = 1).

A stationary AR(1) process {X,} is defined by

X,=pXy, + W, n=0 11, (6

where {W,} is a zero-mean sequence of i.i.d. random vari-
ables and | p| < 1. The sysiem constant p is also the nor-
malized correlation coefficient of the output process {X,}.
One main issue of concem at this point is what first-order
Markov non-Gaussian sequences can be characterized this
way (i.c., are linear processes)? We next discuss this is-
sue via i) the characteristics of the forwand and backward
conditional means (and their relevance to the direction-
ality of the process) and ii) the vanety of amplitude dis-
tributions for {X,}. We will have morc to say about the
conditional means and their use in selecting a linear ver-
sus nonlinear model for non-Gaussian data in sequel.

1) Conditional Means and Directionality: In the case
of linear AR(1) systems, the forward conditional mean is
a linear function, the slope of which is the system coef-
ficient:

EMX|Xeo1] = 8X, 1.

The backward conditional mean depends heavily on the
amplitude distribution of the input {W,}. If the input is
Gaussian, the backward conditional mean is same as the
forward: both are linear. As an example of the non-Gauss-
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ian case, consider the AR(1) model with X, uniform
(-1/2,1/2)andp = 1 /kfork = 2, 3 « - .* This
process has the conditional means

EX | Xecid = £ X

(kX) mod 1 - 3,
EiX. _ =

The dissimilarity of these quantities reveals the temporal
asymmetry of the time series. Although a general expres-
sion for the backward conditional mean of non-Gaussian
AR(1) processes cannct be obtained, Lawrance [17]
showed that it is always nonlinear. As this result is useful
for us later, we give the proof here.
iheorem 1: The backward conditional mean
E[X,..|X.] of an AR(]l) process is linear only in the
Gaussian case [17].
Proof: Making use of stationarity and the indepen-
dence of X, ., and W,, we find that

Oy (1)
Fxow) @

where ®,(u) = E[e”*] is the characteristic function of
the random variable X. From (6) and (7), the joint char-
acteristic function of X, and X, _, is

$xx- (#, v) = Elexp {juX, + jvX,_,}]

= x(pu + v)x(u)/dxlpw).  (8)

Differentiating with respect to v and setting v = 0, we
find that

JEX o 1™ = &pu)dy(u) /®x(pu).

Using the properties of conditional expectation, the left-
hand side could be rewritten as jE[e *NE[X, _,|X.]). If
the backward conditional mean is affine, we must then
have

k even
k odd.

Pwlu) =

adiu) + jbdy(u) = Sylou)dy(u) /%y (pu).

Dividing by ®x(u) leads to a functiong! equation requiring
that &5 (u) /&y (u) be affine in u, which implies a Gaussian
marginal distribution. a

One of the interesting consequences of temporal asym-
metry in sutoregressive models is that forward and back-
wand prediction errors nead not be equal. Equality of these
errors is implicit in signal processing algorithms such as
Burg's maximum entropy method {12, p. 22}. In the case
of our uniform AR(1) example, it follows from (7) that
the input W, takes the values —({k} ~ 1)/2]k|, — (| k|
—~ 3)/2{k|, - - - (| k} = 1)/2|k| with equal probability.
It can then be shown that X, _, is completely determined
by Xo: X,-1 = (kX)) mod 1 — 1/2 for k even and X, _,
= (kX, + 1/2) mod | — 1/2 for k add. Thus the process
has zero prediction ervor in the backward direction, while

*The earlier example a1 the end ol Sectioa 1 comerpiads to & « 2.
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the forward mean-squared prediction error equals the
mean-squared value of W, [13].* We now show that this
inequality of forward and backward prediction errors gen-
cralizes to all AR(1) processes.

Theorem 2: The backward mean-squared prediction
error of a non-Gaussian AR(1) sequence is always less
than the forward mean-squared prediction error. '

Prvof: The forward conditional mean of AR(1)
models is linear, hence the forward mean-squared predic-
tion error is

E[(X, = EIX,|X,.))’] = E[(X = pX,-; — E[W,)].

)

Since the conditional expectation is the best mean-square
estimator, we have

E[(X,-1 = ElX,—1| X)) s E[(X,- — &%) (10)
for all g(+) with equality only when g(X,) = E[X, .| X.).

- Making use of Theorem 1, we find that

E[(Xy-1 = E[X,-1| X))
< E[(X4-1 — pX, - E[WJ_)I] (m

for non-Gaussian {X,}. It is easily verified that the right-
hand sides of (9) and (11) are equal and hence

E[(X,-1 = EIX, 1| XD < ElX, - E(X| X, 1))
(i2)
O
2) Amplitude Distribution: It is difficult to find the dis-
tribution of the output of the linear system (6) when the
input {W,} is non-Gaussian. A tractable approach for
AR(1) models is to assume a known amplitude distribu-
tion for the output {X,} and then derive that of the input
{W,}. Given the characteristic function of X, the ratio of
(7) can then be used to find the characteristic function of
W if the ratio represents a valid characteristic fuaction
(i.c., the ntio must be a positive definite function). Com-
plete chamcterization of the distributions having this
property and thus produced by linear AR(1) systems is not
known {11]. However, under the restriction that the model
be defined for all values of the system coeflicient p be-
tween 0 and 1, these distributions are identical to the class
L (or self-decomposable) distributions well known in the
probability literature [9], {10]. These distnbutions are a
subclass of the infinitely divisible distributions containing
all the stable distributions and have been shiown to be uni-
modal [34]. In the important case of symmetric output
distributions, it follows from (7) that membership in class
L guarantees that the model is defined for the entire range
—1 < p < 1. Using the Lavy characterization of infi-
nitely divisible distributions, we represent the character-
istic function of a symmetric, non-Gaussian random

“This curious example was pedhaps first poiated out dy Roseablatt {24,
p. 52}
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variable belonging to class L as [29]

¥y(u) = log $x(u) = L (e™ ~1) mda (13)

where Ry = R \ 0 and k(a) is au odd symmetric function
which is nonnegative, nonincreasing on (0, ) and sat-
isfies the condition fj, < 1ak(a) da + fjo1> 10~ k(@) da
< o. Taking the derivative on both sides of (13)

_.d’x(“)__s Juer
]——'—du = he k(cr) dax

which is the Fourier transform of k(«). This formula can
be used to verify membership in class L and further char-
acterize its subclasses. To belong to class L, the deriva-
tive of the logarithm of a candidate distribution’s char-
acteristic function (multiplied by —j) must have a Fourier
transform having the properties of k(a). In the accom-
panying table, we list the L2vy measure functions k(a)
comesponding to some of the known symmetric non-
Gaussian distributions.

Consider, for example, the first-order Laplacian auto-
regressive (LAR(1)) model {17]. If {X,} has a Laplacian
density with zero mean and unit variance, py(x) = exp
{~v2|x]}/v2 and &x(u) = 2/ + ). Substituting
this characteristic function into (7), we find that the result
is indeed a valid characteristic function with

2
w) =o' + (1 - pz)———z.

Thus, the input W, is zero with a probabllxty p? and a
normalized Laplacian with pmbabxhty 1 = g In other
words, the generating system in (6) could be written for
the LAR(1) process as

X, = pX,o1 t oW,

where {W,} is i.i.d. Laplacian (zero mean, unit variance)
and ¢, is an independent discrete random variable taking
the values 0 and | with probabilities p* and 1 = p?, re-
spectively. Genenstion of the Laplacian model thus re-
quires & random coefficient system. One of the conse-
quences of a random coefficient generating model for the
Laplacian case is the appeanance of exponential ‘‘run
downs’' (with increasing probability as p increases) in the
sample functions. This effect is illustrated in Fig. 2(c) for
a high correlation of 0.8. This trend may be unsuitable
for modeling a given set of data.

In contrast, suppose {X,} has a hyperbolic secant am-
plitude distribution®:

) =
Px(1)=5$&2h‘:;

1
S By et

- < x < w,

*An interesting property of this distribution is that, just ss in the Gauss-
ian case, its charscteristic function has the tame functiona! form as the
amplitade distribution: &, (u} = sech x.

(©

Fig. 2. Sample functions of (a) HAR(1), (b} Gaussian, and (c) LAR(1)
processes with a correlation of 0.8 between adjacent samples.

Substituting its characteristic function into (7) and eval-
uating the inverse Fourier transform [8], {23], we obtain
the marginal density of the input {W,}:

cos xp/2 cosh 7w /2
cos 7p + cosh xw

Pw(w) = —o < w< ®,
The system thus required to generate first-order Markov
hyperbolic secant, HAR(1), distributed data is not a ran-
dom cocflicient system. Instead, the input to the first-or-
der AR system is a sequence of i.i.d. random variables
having the distribution given above. HAR(1) data having
with a correlation of 0.8 is plotted in Fig. 2(a) along with
Gaussian and Laplacian AR(1) data of same correlation
for comparison. Although both the hyperbolic secant and
Laplacian densities have exponential tails, the HAR(1)
and LAR(1) data differ markedly becauss of the exponen-
tial rundowns in the LAR(1) case.

Note from Table I that only in the Laplacian case is
k() bounded at the origin and that it requires a random
coefficient system. In general, we can use this bounded-
ness criterion to determine which class L distributions will
necessitate a ndom coefficient system. For the density
function of {W,} not to have an impulse at the origin
{which results in & nndom coefficient system)

Sy (u)
li
e &x(pu)

From (13), we must then have

lim X (e - e"“')éga—)dcx = —m,

=0 = lim ¥y -

l 2l 4

¥ylou) = —co,
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TABLE1
L&vy MEASURE FUNCTIONS OF SOME SYMMETRIC NON-GAUSSIAN DiSTRIDUTIONS

Characteristic Function Lavy Measure Fuaction
Distribution L ()] ko)
Laplacian n _: = e B 5ign (@)
Hyperbolic secant sech cosech (a)

. w Ly sign (@)
Hlyperbolic secat squared e (3) o (21} - 1
Cauchy Pl _L

. ..‘m
Symmetsc stable (- —*—- ,,,,}. |l sign (a)

BT(B) sin Ky
0<cphc2

On the other hand, s'nce lim, . fae® ka)/a da ~
lim, ..o k(a), for the input distribution not to have an im-
pulse at the origin, the L2vy measure must be unbounded
at the origin. All k(ar) which are bounded at the origin will
necessarily demand random coefficient systems for the
generation of data having the corresponding amplitude
distribution.

Because the input distribution for the HAR(1) model is
absolutely continuous, the transitional density of this first-
order Markov process can be derived. Using (6)

Prix- (¥|2) = pw(y — px)

_ cos xp/2 cosh x(y — px)/2

cos xp + cosh x(y — px)

Let us now detail how HAR(1) data can be generated.
First the i.i.d. input sequence {W,} is generated from the
independent sequence {U,} distributed uniformly be-
tween 0 and 1, using the pointwise transformation W, =
P3'(U,) where P3'(:) is the inverse of the distribution

(14)

function of {W,}. The correlated data sequence {X,} is -

then obtained by passing { W,} through the linear system
defined by (6). This procedure is precisely the inversion
of conditional distribution function described in the pre-
vious section, a general procedure now simplified by the
assumption of the linear model. The distribution function
of W, is found to be

2 . _, (sinh xw/2
Pa(w) = Px{ sinh ‘(%—37/5—) (15)

where Py(x) = (2/x) tan™" (exp {xx/2}). Using this dis-
tribution function in (15) and evaluating the inverse, we
-1 2 N -1 I’p .
Py'(u) = -;smh cos -— sinh

" o (w2))

If we remove the restriction demanding & model for all
p. output distributions not in class L are possible. In some
cases (as when the chanacteristic function ¢ (1) is non-

monotonic [11]), there is a critical value p, of the system
coefficient beyond which the ratio in (7) exceeds unity, a
situation incompatible with the ratio being a characteristic
function. Consequently, highly correlated sequences can-
not be generated having such amplitude distributions while
they can be generated for smaller correlations. If the char-
acteristic function has zeros, the range of p is further re-
stricted. Supposing that i, is a zero of $x(-), the denom-
inator of (7) becomes zero when u = uy/p; for the ratio
to be bounded, u; = uy/p must also be a zero of $x(-).
This condition then becomes recursive since a zero is re-
quired at uy = uy/p?, uy = uy/p’, etc. Thus & () must
have an infinite number of zeros if it has any. For the
uniform AR(1) example, the characteristic function is
sin 4 /u and has an infinite number ¢f equally spaced ze-
ros. First-order Markov uniformly aistributed time series
are thus defined only forp = 1/k, k= +2, +3, - - .
Systems with such discrete sets of coefficients seem to be
of academic interest only.

Verification of compatibility of a time seriex’ amplitude
distribution witn the conditions implicit in (7), positive
definiteness of the ratio $x(u) /&y (pu), represents a for-
midable task if only an analytic approach is used. Success
is limited by one's ability to derive the inverse Founer
transform of this ratio and show that the result is non-
negative for some range of p. We used numerical methods
to check for the existence of first-order Markovian non-
Gaussian time series other than those in class L and vari-
ants of the uniform example givea above. Our procedure
can be used whenever a symmetric histogram estimate of
the probability density of {X,} is available: an analytic
specification is not necessary. The test consists of the fol-
lowing steps.

1) Given = sampled probability density function, re-
sample it at 2 lower (rational) rate. Any of several deci-
mation/interpolation strategies can be used here [4]. '

2) Fourier transforms of the original and downsampled
density are computed with care taken that the sum of each
density sequence is unity.

3) The point-by-peint ratio of these transforms is com-
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puted and windowed to eliminate inaccurate division
where either of the transforms is small. This window must
be chosen so that negative ripples are not introduced in
the amplitude domain. Consequently, positive definite
windows like the triangular would suffice. We have found
that a nondefinite window such as the rectangular one can
be used by noting how negative its ripples become and
numerically checking that no ripple exceeds that value.

4) The inverse Fourier transform of the windowed ra-
tio is computed and checked for ‘‘essential’’ positivity:
negative portions are allowed to exist but should be within
numeric inaccuracies.

To illustrate the procedure, we choose the sampled ver-
sion of the weighted sum of three equal variance Gauss-
ians with means —1.2, 0, and 1.2, respectively. The re-
sulting density is multimodal and hence is not in class L.
We investigated whether this density could be generated
by first-order systems with coefficients 1/5 and 1/3. See
Fig. 3. We reduced the sampling rate of the density vector
by factors of 5 and 3 by simple downsampling, taking
care that aliasing was minimal by computing the Fourier
transform. The point-by-point ratio of the two transforms
contained numeric noise in the high frequency region due
to rounding. We used a rectangular window to remove
this noise and obtained inverse transforms shown in the
fourth row of Fig. 3. Clearly, the example density seems
compatible with p = 1/5 but not with p = 1/3 as the
latter results contain significant negative values in the
tails. This threshold is close to the critical value p, men-
tioned previously.

While this numeric approach is imprecise, it can be val-
idated via simulation. Assuming a candidate distribution
seems viable, the result of the numeric test is the ampli-
tude distribution of the input. By simple calculation of the
partial sums, the cumulative distribution of the input can
be calculated and used to generate the i.i.d. sequence
{W,} predicted by the computations. By passing this se-
quence through a first-order filter, estimating the ampli-
tude distribution of the output, and comparing the esti-
mate with the candidate distribution, the prediction can
be confirmed. We performed this test on the trimodal ex-
ample just described for p = 1/5. The resulting estimate
of the output distribution did greatly resemble the candi-
date distribution and verified that amplitude distributions
produced by first-order systems need not be unimodal. We
have thus demonstrated the existence of such densities
more directly than in [11].

B. Nonlinear Markov Processes and Diagonal
Expansions of Bivariate Distributions

Bivarniate distributions of stationary random processes
have in the past been analyzed using series expansion
methods. These expansions find application in the study
of Markov processes [33] and of the effect of nonlinean-
ties on random processes, e.g., in the analysis of the out-
put of a cascade of a narrow-band filter and a square law
detector [1].
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Fig. 3. Figures in left and right columns refer to system coefficients of 1 /5
and | /3, respectively. The first row depicts sampled output amplitude dis-
tributions and down-sampled versions. The second row shows the corre-
sponding chancteristic functions obtained by taking Fourier transforms.
Point-by-point rutio of these transforms is shown next along with the rect-
angular window used. Finally, the computed input amplitude distributioa
(inverse transform) is shown aloag with the output distributioa.

Let py r(x, y) be the joint density of random variables
X and ¢ with marginal densities py(x) and p.(y), respec-
tively. Supposs py y(x. y) satisfies the condition

g- X P?t r{x. y)
-o J-a px(X)pr(y)

dr dy < oo, (16)

Then, complete orthonormal sets  {¢{x)}., and

{¥4)} =0 can be defined in L(py dx) and L*(py dy) such
that the series expansion

Pxy(x, y) = px(x)py(y) {1 + 23‘ M,(x)w.(y)z (17n

commonly referred to as the diagonal expansion because
of the single summation, converges in mean-square sense
[16]. A well-known example is Mchler's expansion of a
bivariate Gaussian density in terms of Hermite polyno-
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mials {1]. Note that by definition ¢o(+) = Yo(+) = | and
that Ay = 1. The coefficients of expansion are given by

N o= “ S{WAYpx.y(x, y) dx dy

and are by convention taken to be nonnegative: the sign
is incorporated in the orthonormal sets [30]. The ordering
of the basis functions is determined so that the coefficients
represent a decreasing sequence: 0 < \; s land A} 2
N, i 2 j. Furthermore, note that the orthonormal sets are
_ complementary eigenfunctions of the bivariate density:

pr.r(x. Nex) dx = N (y)

S Px.r(x, YWAY) dy = Ng(x).

The terms inside the summation sign of (i7) account
for the dependency between the two random variables X
and Y; if ; = 0 fori 2 1, X and Y are statistically in-
dependent. The coefficient A, is referred to as the maximal
correlation coefficient because it is the supremum over all
(finite-variance) functions g,(-) and g5(+), of the normal-
ized correlation between g,(X) and g,(Y) [28). If ¢,(*)
and ¥,(-) are affine, it follows from orthonormality that
$1(x) = (x = py)/ox and ¥y(y) = (¥ ~ py)/oy where u
and o? are the mean and variance, respectively. In this
case, the maximal correlation coefficient A, coincides with
the usual correlation cocfficient. However, A, is in gen-
eral larger than the correlation coefficient in magnitude
and gives a better characterization of the dependence be-
tween X and Y: the random variables are independent if
and only if A, is zero [26). The maximal correlation coef-
ficient and the functions é;(*) and y,(-) are important in
approximating the series expansion in (17) with a finite
number of terms.

Let us apply the foregoing discussion to a stationary
Markov random sequence {X,}. Denote its marginal den-
sity by px(*) and the joint density of X, and X,_, by
Prs x-2(" *). We must have

g Prox-o(x. ) dy = px(x)

and gPun-.(x. y)  dr=p(y)  (18)

for all m because of stationarity. These conditions, how-
ever, do not restrict the bivanate density functions of the
process to be symmetnc; py, x... (%, ¥) is not necessanly
identical to py, x,__(y, x). Although asymmetric diagonal
expansions of the form given by equation (17) have been
studied before (2], {26], [31], they have not been applied
to random processes. A special case of (17) is commonly
considered where the two sets of orthonormal functions
are identical, which yields a symmetric bivariate density
and imposes temporal symmetry on the underiying time
series. As we have noted earlier, in contrast to the Gauss-
ian case, the bivariate densities of non-Gaussian pro-
cesses need not be symmetric because of temporal asym-

metry. For example, for the HAR(1) model

1 >
PreXe-%:Y) = 3 sech )
| cos xp™ /2 cosh x(y — p™x)/2

cos 7p™ + cosh x(y — p™x)
(19)

The necessity of the general expansion (17) for non-
Gaussian processes is thus clear.

Using the diagonal expansion of py, x. - (%, ¥), we can
write the conditional distribution function of the Markov
process {X,} as

Prix-x|y) = L’ px(@) {1 + [?; M,(z)\h(y)} dz.

(20)

The diagonal expansion thus serves as a tool for analyzing
the generating system of the Markov process. However,
as we have seen in Section II, we need the inverse of the
above conditional distribution function to generate the
Markov sequence from an i.i.d. uniform sequence. Cal-
culating the inverse of the summation in (20) even in an
approximate form is extremely difficult. If, however, we
limit the diagonal expansion to a finite number of terms
(making sure that the integrand is nonnegative) such that
the conditional distribution function can be inverted, we
have a method for generating correlated non-Gaussian
Markov sequences that are not necessarily linear. Since
the additional dependency between X, and X, _, with each
added term decreases progressively (A, > A, )), these
terms could be selected to match the required dependency
t0 a large extent. Sarmanov.[27] studied the finite sum,
continuous-time version of (20). For continuous-time
processes, diagonal expansions with finite number of
terms cannot be used when the eigenfunctions and the
marginal density function are continuous: the finite sum
does not remain nonnegative over the entire domain for
all values of sepamtion ¢ between the samples. Fortu-
nately, this problem does not arise in the discrete-time
case.

If the domain of the marginal density is finite, uniform
on [0, 1] for example, polynomials can be used in the
finite sums. If the marginal density function is onc of the
classical weight functions, orthogonal polynomials such
as Jacobi polynomials can be used; otherwise the mo-
ments of the distribution can be used to construct orthog-
onal polynomials. For example, a uniform [0, 1] distrib-
uted, temporally symmetric Markov process can defined
by the joint amplitude distribution

Prov.. &Y =1 +ax - H2y - 1)

laj <1, O0=<xys<s 1 @

For distnibutions defined on the infinite domain, the
functions in the expansion have to be chosen depending
on the particular case. However, some recipes applicable
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to all situations exist. Take for instance, the temporally
symmetric process defined by the Morgenstermn's family
[S, p. 578] of joint densities

Prr- & Y) = py@pr(N{1 + a@2Py(x) - 1)

* (2P,(y) -~ D}. 22)

It can be obtained by passing the uniform Markov se-
quence {V,} defined in (21) through the nonlinearity
Py!() where Py(-) is the (cumulative) distribution func-
tion of :he required output {Y¥,}. Such an operation on
{V.} leads to Py, y,_\(x,¥) = Py,y,_,(Py(x), Py(y)) from
which (22) follows by differentiation. Devroye (5, p. 580]
gives a simple generation rule for {V,} (and thus for
{1.}). A more direct generation via (4) requires the eval-
uation of the conditional distribution. This procedure re-
sults in a quadratic equation for Py(Y,) involving ¥, _,
and U, (recall that this is i.i.d. uniform [0, 1]), the in-
version of which gives us the generation formula

53

For an arbitrary stationary Markov process, the condi-
tional means may or may not be linear. These quantities
are given in terms of the components of the diagonal ex-
pansion as

EG | X,oi) = 2 NEDGSXDWX, 1)

ElXe-1[Xd = 2 NE[X,- WilX, - )}édX).

If any basis function {¢,(+)} is linear, under the condition
that the fuuctions .
g’ O Pxx- & D Sxipx..x.-.(‘- b))
edx  px(x)’ ady  px(¥

do not change sign on their domain (a, b), we can con-
clude thai .. other linear term is present and that the lin-

' Y
Y,=

Py (U,

where we have set Q(Y,_ ) = 2P,(Y,_) — | for sim-
plicity.

As an example of a temporally asymmetric case, con-
sider {Z,} defined by

Pzze- & ¥) = pz(Opz(M {1 +.a(3P3(x)

= 2P (x))(2P(y) - D} (23)
Proceeding as above for the generation of {Z,}, we find
a cubic equation in Pz(Z,) which makes the generation
difficult. It is much simpler to generate the process back-
wards. Ia this case, we oblain a quadmtic equation for
Pz(Z, ) s in the symmetnic case above, with the coef-
ficients being different functions of Z, and U,.

A major drawback in using the diagonal expansion
method for generating correlated sequences is that the en-
tire range of correlation coefficients cannot be realized (for
the processes {V,} and {,} above, {p| < 1/3 and for
{Z.}, o] s V2/3V5). Maximally correlated random
varizbles are important in varisnce reduction techniques
in Monte Carlo simulation. Typically, adding more terms
in uie finite sum improves the available range of comrela-
tions, but it becomes increasingly difficult to ensure the
nonnegativity of the sum. The question of the available
range of correlation can be linked to the comprehensive-
ness of the defining bivanate distributions [S). A family
of bivariate distributions is said to be comprehensive if it
includes the product of marginals and Frechet's extremal
distributions (which result in extremum positive and neg-
ative correlations | and —1). Cleardy, the first require-
ment is satisfied for the joint densities defined using di-
agona! expansion methods while the second is usually not.

p3t <30Q(Y <) = 1+ V[l = 3aQ(Y,_ )} + 12aU,Q(Y, )
6‘JQ(Yn-l)

>o Q(Yl—l) #C

oY,_p=0

ear term must be the first member ¢,(+) [21]. The series
expansion for the forward conditional mean then truncates
with the result

E[X, |X-- J = MEX S (XWX, -))

indicating that the forward conditional mean is propor-
tional to the eigenfunction ¥,(X, ). Similarly, when one
of the members of {y{*)} is linear, the expansion for the
backward conditional mear reduces to a single term. In
these cases, the conditional means yield direct informa-
tion about the components of the diagonal expansion,
thereby leading to the conditional distribution and the
genenation system.
We tested the analysis procedures described here as well
. as the more common, Gaussian based ones on two sets of
data: the linear HAR(1) time series {X,} and the nonlin-
ear time series {Y,} defined by (22) also having a hyper-
bolic secant marginal distribytion. The nonlinear model
is thus defined by

1

Prav. 2. ) '-’550‘3**2 . Wh%{’ + 3a

!
2 2

. [3 tan~' (e - 1]
T

. 1:5 m‘l (evﬂ) -— 1]}.
T

The correlation coefficient of the adjacent samples of
this process is py = 3b%a ~ 0.88375 a where b =
(=23 /x)tan™" %/ (1/2) sech x7/2 dz = 14/ x* {(3)

*and {{*) is Riemann's zeta function. Also, from (2) we
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secant time series and the nght column the conditional means for the linesr, emponilly asymmetric HRAR(1) time series

we get

1 x | Ty -
Pyhr.-.(f. y) 2sech > Zsach 5 {1 + 3a

. [i tan™! (eﬂ/}) _ 1]
b ¢

. [i tan~! (eﬁ/?) - 1]}
T

and it follows that the correlation function of this tem-
porally symmetric model is Ry(m) = (1 — 3b%)3(m) +
3b%a". Note that this temporally symmetric first-ordes
Markov time series can only be produced by 2 ronlincas
system. The correlation function of the corresponding lin-
car time senies, while having the same marginal distribu-
tion, is simply Ry(m) = p~.

We generated these two time series so that they have
the same correlation cocfficient of .25 between adjacent
ssmpies. The power spectral density esumates of the two
data plotted in Fig. 4 are quite similar. The forward con-
ditional mean of the HAR(!) data is lincar while the back-
ward mean is not, thus confirming its temponl asymme-

try. For the nonlinear, temponally symmetric data, both
conditional means are noniinear but identical. See Fig. 5.
The conditional means thus identify temporal asymmetry
well where power spectral estimation based techriques
fail.

IV. Concrusions

Non-Gaussian processes present new challenges to the
statistical signal processor stiempiing to develop analysis
techniques. We have shown that correlation analysis can-
nrot be expected to suffice, which immediately distin-
guishes pon-Gaussian data from Gaussian. Temporzi
symmetry can be assessed with conditional mean analy-
sis. While not shown here, the statistical charactensucs
of conditional mean estimates are identical 1o those ef his-
togam-based probability density estimators {25]. Coa-
sequently, hypothesis tests for determining the temponl
symmetry of a time series can be established. However,
first-order conditional mean anglysis does not capture all
of a time series’ temporal symmetry properties: similar
forward and backward means can belic an asymmetne
process.
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Successful analysis can be measured by one’s ability to
generate a statistically identical version via simulati-n.
This yardstick has implicitly formed the basis for our sys-
tem-based modeling of non-Gaussian Markov processes.
Linearity of the system can be tested by considering the
forward and backward conditiona! means. If the forward
conditional mean is linear and the backward mear. is non-
linear (the time series must be temporally asymmetric if
linear and non-Gaussian}, then a linear model may suf-
fice. If a first-order model is appropriate, the amplitude
distribution of the driving ‘‘white noise’ process can be
determined with our numerical method. If the method fails
to preduce a valid amplitude distribution, nonlinear
models may be the only recourse. If nonlinear models
seem necessary, our theoretical framework is insufficient
to produce the correct generation system in all cases. If,
however, the maximal correlation coefficient dominates
the diagonal expansion of the bivariate density, condi-
tiona] mean analysis can yield an approximate system.
Whether linear or not, the generating system examples
shown here demonstrate the complexities for first-order
sequences; higher order ones can only be more compli-
cated.

Alternative approaches to non-Gaussian analysis are
now being actively studied. Most activity is devoted to
the bispectrum and its higher variants. This approach
clearly has uses; for example, the bispectrum eliminates
independent additive components that have zero skew.
However, this approach is based or higher order corre-
lation functions which can be construed as an ad hoc ex-
tension of Gaussian-based second-order correlation. The
ability to extract the gereration system for a ume senes
from its higher order correlation functions has not been
demonstrated; techniques have not been developed to
classify the system’s lincanty. Qur results indicate thai
consideration of both the directionality and the amplitude
distibution are needed for any scheme to be considered
capable.

Processing of non-Gaussian data also requires the mea-
surement of new properties beyond correlation analysis.
Many signal processing algonthms implicitly assume
temporal symmetry of the data being analyzed. We have
shown that forward and backward prediction errors are
not necessanily cqual in the non-Gaussian case Conse-
quently, new signal processing strategies need o be de-
veloped to cope with such data. For example, speech data
have been subjected to hincar predictive analysis for dec-
ades. Assumming for the sake of argument a stechastic
maodel for speech signals, they are decidedly non-Gauss-
12n Since fincar speech production models seem to cap-
ture much of their charactenstizs, speech must be tem-
porally asymmetnec. Lincar prediction algonthms that
weight forward and backward prediction errors equally
can be improved by consideration of the temporal 2sym-
metry properties we have demonstrated here. Since back-
ward mean-sgrared errors are always smaller, more
weight should be placed on them m such analyses

Care must be taken in applying the results and concepts
developed here to non-Gaussian data. Many of our results
have been developed for first-order Markov processes.
Extension of these ideas to higher order data in particul:-
must be carefully considered. A distribution-free tech-
nique for estimating model order is described elsewh~re
[15]. A logical extension of the aralysis techniques would
be based on higher order conditional means. Such quan-
tities require much data to estimate and the difficulty of
the analysis increases. In these situations, higher order
correlation functions are the only current alternative;
however, for the reasons given above, they are limited in
scope. New techniques based on a fundamental under-
standing of non-Gaussian processes are clearly needed.
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